Bordetella parapertussis Circumvents Neutrophil Extracellular Bactericidal Mechanisms

نویسندگان

  • Juan Gorgojo
  • Emilia Scharrig
  • Ricardo M. Gómez
  • Eric T. Harvill
  • Maria Eugenia Rodríguez
چکیده

B. parapertussis is a whooping cough etiological agent with the ability to evade the immune response induced by pertussis vaccines. We previously demonstrated that in the absence of opsonic antibodies B. parapertussis hampers phagocytosis by neutrophils and macrophages and, when phagocytosed, blocks intracellular killing by interfering with phagolysosomal fusion. But neutrophils can kill and/or immobilize extracellular bacteria through non-phagocytic mechanisms such as degranulation and neutrophil extracellular traps (NETs). In this study we demonstrated that B. parapertussis also has the ability to circumvent these two neutrophil extracellular bactericidal activities. The lack of neutrophil degranulation was found dependent on the O antigen that targets the bacteria to cell lipid rafts, eventually avoiding the fusion of nascent phagosomes with specific and azurophilic granules. IgG opsonization overcame this inhibition of neutrophil degranulation. We further observed that B. parapertussis did not induce NETs release in resting neutrophils and inhibited NETs formation in response to phorbol myristate acetate (PMA) stimulation by a mechanism dependent on adenylate cyclase toxin (CyaA)-mediated inhibition of reactive oxygen species (ROS) generation. Thus, B. parapertussis modulates neutrophil bactericidal activity through two different mechanisms, one related to the lack of proper NETs-inducer stimuli and the other one related to an active inhibitory mechanism. Together with previous results these data suggest that B. parapertussis has the ability to subvert the main neutrophil bactericidal functions, inhibiting efficient clearance in non-immune hosts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acellular pertussis vaccination facilitates Bordetella parapertussis infection in a rodent model of bordetellosis.

Despite over 50 years of population-wide vaccination, whooping cough incidence is on the rise. Although Bordetella pertussis is considered the main causative agent of whooping cough in humans, Bordetella parapertussis infections are not uncommon. The widely used acellular whooping cough vaccines (aP) are comprised solely of B. pertussis antigens that hold little or no efficacy against B. parape...

متن کامل

Bordetella parapertussis survives inside human macrophages in lipid raft-enriched phagosomes.

Bordetella parapertussis is a human pathogen that causes whooping cough. The increasing incidence of B. parapertussis has been attributed to the lack of cross protection induced by pertussis vaccines. It was previously shown that B. parapertussis is able to avoid bacterial killing by polymorphonuclear leukocytes (PMN) if specific opsonic antibodies are not present at the site of interaction. He...

متن کامل

Clearance of Bordetella parapertussis from the lower respiratory tract requires humoral and cellular immunity.

Bordetella parapertussis and Bordetella pertussis are closely related species that cause whooping cough, an acute, immunizing disease. Their coexistence in the same host populations at the same time and vaccine studies showing that B. pertussis vaccines have little effect on B. parapertussis infection or disease suggest that the protective immunity induced by each does not efficiently cross pro...

متن کامل

Patterns of Bordetella parapertussis respiratory illnesses: 2008-2010.

Clinical specimens from 9 states during 2008-2010 were tested by PCR for Bordetella pertussis and Bordetella parapertussis. Of the positive samples, 13.99% were identified as B. parapertussis. It was concluded that B. parapertussis infections are more common than previously realized and contribute to cases thought to be vaccine failures.

متن کامل

Serendipitous discovery of an immunoglobulin-binding autotransporter in Bordetella species.

We describe the serendipitous discovery of BatB, a classical-type Bordetella autotransporter (AT) protein with an approximately 180-kDa passenger domain that remains noncovalently associated with the outer membrane. Like genes encoding all characterized protein virulence factors in Bordetella species, batB transcription is positively regulated by the master virulence regulatory system BvgAS. Ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017